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Abstract

The motor cortex controls skilled arm movement by recruiting a variety of targets in the nervous system,
and it is important to understand the emergent activity in these regions as refinement of a motor skill oc-
curs. One fundamental projection of the motor cortex (M1) is to the cerebellum. However, the emergent
activity in the motor cortex and the cerebellum that appears as a dexterous motor skill is consolidated is
incompletely understood. Here, we report on low-frequency oscillatory (LFO) activity that emerges in
cortico-cerebellar networks with learning the reach-to-grasp motor skill. We chronically recorded the
motor and the cerebellar cortices in rats, which revealed the emergence of coordinated movement-re-
lated activity in the local-field potentials as the reaching skill consolidated. Interestingly, we found this
emergent activity only in the rats that gained expertise in the task. We found that the local and cross-
area spiking activity was coordinated with LFOs in proficient rats. Finally, we also found that these neu-
ral dynamics were more prominently expressed during accurate behavior in the M1. This work furthers
our understanding on emergent dynamics in the cortico-cerebellar loop that underlie learning and execu-
tion of precise skilled movement.
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Significance Statement

Movement execution involves parallel processing across brain regions, with the motor cortex (M1) being a
key hub that recruits several subcortical nodes. The cerebellar cortex is a principal receiver of M1 projec-
tions via pons, but the emergent dynamics in these regions with motor skill learning is incompletely under-
stood. We performed simultaneous recordings of M1 and cerebellum in a reach-to-grasp task. We found
low-frequency activity and coordinated neural dynamics emerged within and across regions with skillful
task execution. Recent interest in modulating cortico-cerebellar networks for motor recovery postinjury/
stroke make this work an important precursor to assessing whether similar low-frequency activity in cortico-
cerebellar networks can serve as a biomarker of motor recovery and help to optimize the modulation of
these networks.

Received January 11, 2023; accepted January 24, 2023; First published
February 7, 2023.
The authors declare no competing financial interests.

Author contributions: P.F. and T.G. designed research; P.F., A.A., A.W.F.,
N.P.D., and T.G. performed research; A.A. contributed unpublished reagents/
analytic tools; P.F., A.A., A.W.F., N.P.D., R.S., and P.R.R. analyzed data; P.F. and
T.G. wrote the paper.

February 2023, 10(2) ENEURO.0011-23.2023 1–12

Research Article: Confirmation

https://orcid.org/0000-0003-3243-7883
https://doi.org/10.1523/ENEURO.0011-23.2023


Introduction
The primary motor cortex (M1) is viewed as a driver for

movement, and an emerging view posits transient oscillatory
dynamics—both at the level of spiking and local field poten-
tials (LFPs)—as the neural substrate for it (Donoghue et al.,
1998; Churchland et al., 2010, 2012; Mollazadeh et al., 2011;
Hall et al., 2014a; Ramanathan et al., 2018; Lemke et al.,
2019). There has been a particular interest in low-frequency
quasi-oscillatory activity (LFOs) in M1, which can be brief (1–2
cycles) for rapid movements or longer for sustained move-
ments, and it has been shown to be phase locked to sub-
movement timing (Stefanics et al., 2010; Hall et al., 2014b;
Ramanathan et al., 2018; Lemke et al., 2019). Recent work
showed that such oscillatory dynamics are coordinated in the
M1 and dorsolateral striatum in rodents as they learned a
reach-to-grasp task (Lemke et al., 2019). One of the principal
projections of M1 is to the cerebellum via the pons (Kelly and
Strick, 2003; Leergaard et al., 2004; Wagner et al., 2019; Guo
et al., 2021), but similar oscillatory dynamics have not been
studied in cortico-cerebellar networks.
M1 is a key brain hub involved in voluntary forelimbmove-

ment: experimental lesions of M1 in animal models or neuro-
logic injury to M1 (e.g., stroke) impair dexterity (Lawrence
and Kuypers, 1968; Whishaw et al., 1993; Krakauer and
Carmichael, 2017; Ramanathan et al., 2018); stimulation of
M1 neurons evokes movement (Grünbaum and Sherrington,
1902; Graziano et al., 2002; Miri et al., 2017), spiking activity
in M1 is closely linked to movement parameters (Evarts,
1966; Georgopoulos et al., 1982; Scott, 2003; Guo et al.,
2015; Lemke et al., 2019; Wagner et al., 2019), and optoge-
netic perturbation of M1 affects forelimb behaviors (Guo et
al., 2015; Miri et al., 2017; Bollu et al., 2018; Sauerbrei et al.,
2020). The role of the cerebellum in the coordination of arm
movements has also been extensively studied. Investigation
of prehension/reaching tasks in animals have shown that
cerebellar neurons—both in the cerebellar cortex and its
deep nuclei—are tuned to several movement-related events,
such as movement onset (MO); cues leading to movement;
and its duration, limb position, velocity, and muscle activity
(Thach, 1970; Wetts et al., 1985; Marple-Horvat and Stein,
1987; Fortier et al., 1989; van Kan et al., 1993; Heck et al.,
2002). In addition to coding for the above-listed features of
limbs and associated movement parameters, other evi-
dence indicates that the cerebellum participates in the

formation of procedural memories, learning, and retention of
skills, habits, and conditioned responses (Bloedel et al.,
1997; Thach, 1998). Cerebellar lesions impair acquisition
of skilled behaviors and patients with cerebellar disease
show impaired reaching (Zackowski et al., 2002; Tseng
et al., 2007; Nashef et al., 2019). Furthermore, optoge-
netic perturbation of cerebellar nuclei or pontine inputs
can cause a loss of end point precision in mice during
reach-to-grasp behavior (Becker and Person, 2019; Guo
et al., 2021). Additionally, electric stimulation over the
cerebellum facilitates adaptive control of reaching (Galea
et al., 2011; Herzfeld et al., 2014). Recent rodent work
using two-photon imaging showed the emergence of
shared neuronal dynamics in M1–cerebellar ensembles
as animals learned to expertly control a manipulandum
(Wagner et al., 2019).
In this study, we have focused on transient oscillatory

dynamics that emerge in M1 and the cerebellum as a
reaching skill is learned with contiguous 5 d of practice.
We recorded neural activity in the M1 and contralateral
cerebellum (the primary M1 target through pons nuclei)
throughout the learning of a reach-to-grasp skill in rats.
We observed emergent coordinated low-frequency oscil-
latory activity (1–4Hz) across M1 and cerebellum LFPs
that were linked to increased success rates of at least
30% by day 5. We also found that LFPs modulated spik-
ing in both regions and that the spiking dynamics were
conserved for successful, accurate movements.

Materials and Methods
Animal model and surgical procedures
All procedures were conducted in accordance with pro-

tocols approved by the Institutional Animal Care and Use
Committee at the Cedars-Sinai Medical Center. Adult
male Long Evans rats (n=20; weight, 250–400 g; Charles
River Laboratories) were housed in a 14 h/10 h light/dark
cycle. All experiments were performed during the light
cycle. We used 10 rats for behavior only (Fig. 1) and 10
rats for behavior and physiology (Figs. 2-5, Table 1, de-
tails). No statistical methods were used to predetermine
cohort size, but our sample sizes are similar to those re-
ported in previous publications (Kargo and Nitz, 2004;
Ramanathan et al., 2015; Sauerbrei et al., 2015; Gulati et
al., 2017; Lemke et al., 2019). Animals were pair-housed
before electrode implantation or behavioral training and
then single-housed after to prevent damage to implants
or to implement food restriction, respectively.
All surgical procedures were performed using sterile

techniques under 1–4% isoflurane. Surgery involved
cleaning and exposure of the skull and preparation of
the skull surface using cyanoacrylate and then implan-
tation of the skull screws for referencing and overall
head-stage stability. The analgesic regimen included
the administration of 0.1mg/kg body weight buprenor-
phine, and 5mg/kg body weight carprofen. Neural im-
planted rats were also administered 2mg/kg body weight
dexamethasone and 33mg/kg body weight sulfatrim for
5d. All neural-implanted animals were allowed to recover
for 5d before further behavioral training. Ground and
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reference screws were implanted posterior to l contralat-
eral to the recorded cerebellum, contralateral to the
neural recordings. For M1 recordings, 32-channel ar-
rays (33 mm polyamide-coated tungsten microwire ar-
rays) were lowered to a depth of ;1200–1500mm in
either the left or right M1 depending on handedness.
These were implanted centered at 0.5 mm anterior and
3 mm lateral to the bregma (Ramanathan et al., 2015;
Lemke et al., 2019). For cerebellar recordings, we used
32–64 channel tetrodes (NeuroNexus) or shuttle-
mounted polytrodes (Cambridge NeuroTech). The
probes were lowered into the cerebellar cortex through a
craniotomy centered at 12.5 mm posterior and 2.5–3 mm
lateral to bregma. Shuttle mounted probes were moved
across days and recorded from depths of 1.5–4 mm. Our
target regions were Simplex/Crus I and Crus II areas of the

cerebellum. Activity in these areas has shown modulation
during upper limb motor behaviors and in response to corti-
cofugal fiber and forelimb stimulation (Atkins and Apps,
1997; Baker et al., 2001; Heck et al., 2007). For the cerebel-
lar recordings, we confirmed the location of electrode tips
either through the following: (1) staining with the orange/red
fluorescence stain DiI (Thermo Fisher Scientific); or (2) three
markers of Iba1 (microglia), GFAP (astrocytes), DAPI (nu-
clei), as shown in Figure 2A (also see immunohistochemis-
try details below).

Experimental design
Rats were acclimated to the behavioral box for at least

2 d and then exposed to a reach-to-grasp task for 5–10
trials to establish hand preference before neural probe im-
plantation. Probe implantation was performed in the con-
tralateral M1 and ipsilateral cerebellum to the preferred
hand. Rats were allowed to recover for at least 5 d before
the start of experimental sessions. During behavioral as-
sessments, we monitored the animals and ensured that
their body weights did not drop to ,90% of their initial
weight. We used an automated reach-box, controlled by
custom MATLAB scripts and an Arduino microcontroller.
This setup requires minimal user intervention, as de-
scribed previously (Wong et al., 2015). Each trial con-
sisted of a pellet dispensed on the pellet tray, followed by
an alerting beep indicating that the trial was beginning.
They then had 15 s to reach their arms through the slot,
and grasp and retrieve the pellet. A real-time “pellet de-
tector” using an infrared sensor centered over the pellet
was used to determine when the pellet was moved, which
indicated that the trial was over, and the door was closed.
All trials were captured by video through a camera placed
on the side of the behavioral box. The camera was synced
with the electrophysiology data using Arduino digital output
or directly through TTL (transistor–transistor logic) pulses to
the TDT RZ2 system (Tucker-Davis Technologies). In elec-
trode-implanted animals, the video frame rate ranged from
30 to 303Hz (Table 1). For behavior-only animals, the frame
rate was either 30 or 87Hz.

Behavioral testing
Rats began behavioral testing training 5d after surgery by

performing the same reach-to-grasp task. Electrophysiology
recordings were taken throughout the full extent of the test-
ing, which consisted of one to two sessions of 60–100 trials/d
for 5d. Typically, each day would consist of a session of 100
trials followed by a session of 60 trials. Sessions within a day
were spaced by a 2 h resting block.

In vivo electrophysiology
Units and LFP activity were recorded using a 128-chan-

nel TDT-RZ2 system (Tucker-Davis Technologies). Spike
data were sampled at 24,414Hz, and LFP data were
sampled at 1017.3Hz. ZIF (zero insertion force) clip-based
digital head stages from Tucker-Davis Technologies were
used that interface the ZIF connector and the Intan
RHD2000 chip that uses 192� gain. Behavior-related time
stamps (i.e., trial onset, trial completion) and video time
stamps (i.e., frame times) were sent to the RZ2 analog

Figure 1. Behavioral evaluation of the skilled reach-to-grasp
task. A, The behavioral setup for the skilled forelimb reaching
task with simultaneous neurophysiological recording. B, Top,
Illustration of the reach-to-grasp task showing the three major
parts of the reach movement: reach onset, pellet contact, and
retract onset. Bottom, Comparison of a failed trial and a suc-
cessful trial. C, Success rate and reach event timing from a rep-
resentative expert animal. D, E, Difference in success rate and
reach duration from early training days to late training days
[n=14 experts (left, gray lines), 6 nonexperts (right, mustard
lines)]. Thin lines represent individual animals, and the thick line
is the mean and SEM across animals. The p-values are from
mixed-effects models.
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Figure 2. Coordinated movement-related mesoscopic activity emerges across M1 and cerebellum during skill learning. A, Left, Schematic
of recording electrode locations in M1 and contralateral cerebellum depicted from top. Right, Histologic verification of recording location in
cerebellum [three markers used: Iba1 (green, microglia), GFAP (pink, astrocytes), DAPI (blue, nuclei)]. Sagittal section shows cerebellar lo-
bules and cortical layers. Scale bar, 1 mm. Electrode shank is marked by two arrows. B, Example time course of skill learning from an ex-
pert animal and illustration of recording scheme in M1 and the cerebellum from a frontal-side view (MO, movement onset; PC, pellet
contact; RO, retract onset). C, M1 (pink) and cerebellum (orange) LFP for representative successful trials from days 1 (early) and 5 (late) trials
in an expert animal; 1–4Hz filtered LFP is overlaid on raw trace. D, Left, Spectrograms of example M1 and cerebellar channels from an ex-
pert animal. Right, Difference in 1–4Hz cerebellum and M1 power from early training to late training in experts and nonexperts. The gray
lines represent the mean power from individual expert and nonexpert animals [left bar plot (experts), n=5 animals; right bar plot (nonex-
perts), n=4 animals], and the black lines represent the mean 6 SEM. The p-values are from mixed-effects models. E, Left, Coherograms
from an example M1 and cerebellum LFP channel pair. Right, Difference in 1–4Hz M1–cerebellum coherence from early to late training ses-
sions in experts and nonexperts. The gray lines represent the mean coherence from individual animals (n=4 animals each in expert and
nonexpert bar plots), and the black lines represent the mean and SEM. The p-values are from mixed-effects models. F, The 1–4Hz filtered
LFP from example M1 and cerebellum channels time locked to reach events; individual trials with mean overlaid. Bar plots depict the
changes in ITC from early trials to late trials (top row, M1; bottom row, cerebellum). The gray lines represent the mean ITC from individual
animals (n=5 animals), and the black lines represent the mean and SEM; p-values are from mixed-effects models.

Table 1: Number of rats used for experiments

Animal Camera framerate M1 Probe M1 units Cb Probe Cb units
1 30 32-Channel array 208 4 � 8 Tetrode 117
2 75 32-Channel array 737 4 � 16 Polytrode 236
3 75 32-Channel array 482 4 � 16 Polytrode 51
4 75 32-Channel array 870 4 � 16 Polytrode Discarded
5 87 Not implanted N/A 2 � 32 Polytrode 150
6 303 32-Channel array 533 4 � 16 Polytrode 123
7 30 No N/A No N/A
8 30 No N/A No N/A
9 30 No N/A No N/A
10 30 No N/A No N/A
11 30 No N/A No N/A
12 30 No N/A No N/A
13 87 No N/A No N/A
14 87 No N/A No N/A
15 30 32-Channel array N/A 4 3 8 Tetrode N/A
16 30 32-Channel array N/A 4 3 8 Tetrode N/A
17 75 32-Channel array N/A 4 3 16 Polytrode N/A
18 75 32-Channel array N/A 4 3 16 Polytrode N/A
19 87 No N/A No N/A
20 87 No N/A No N/A

Tabulated list of animals and behavioral monitoring camera frame rates and electrode used (see columns). Rows in bold type indicate animals that did not gain
expertise in the task (spike data were not analyzed in these animals). N/A, Not applicable.
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input channel using an Arduino digital board and synchron-
ized to the neural data.

Immunohistochemistry
After all experiments, rats were anesthetized and trans-

cardially perfused with 1% PBS, followed by 4% parafor-
maldehyde (PFA). The harvested brains were postfixed for
72 h in PFA and immersed in 30% sucrose. For immuno-
fluorescence staining (Fig. 2A), sagittal cerebellar tissue
cryostat sections (40 mm) were washed 3� in 1� Tris-buf-
fered saline (TBS), followed by antigen retrieval with 0.1N
hydrochloric acid (HCl). After three more washes in 1�
TBS, sections were blocked with 5% normal donkey
serum in 0.1% TBS-T (Triton X-100) for 1 h. Sections were
then incubated in primary antibodies for astrocytes and
microglia overnight. The next day, sections were washed
three times in 1� TBS and then incubated with fluores-
cent secondary antibodies for 2 h. Sections were then
washed three times in 1� TBS and incubated with 300 nM
DAPI in 1� TBS for 7min, before coverslipping with
mounting media (ProLong Glass Antifade Mountant; cata-
log #P36980, Thermo Fisher Scientific). Primary antibod-
ies used are 1:1000 rat-anti-GFAP (catalog #13–0300,
Thermo Fisher Scientific) and 1:1000 rabbit-anti-IBA1
(catalog #019–19741, Wako). Secondary antibodies used
are 1:250 Alexa Fluor-647 donkey-anti rat (catalog #712–
605-153, The Jackson Laboratory) and 1:1000 Alexa Fluor-
488 donkey-anti rabbit 488 (catalog #A-21206, Thermo
Fisher Scientific). Fluorescent sections were imaged with a
BZ-X700 microscope (Keyence).

Analyses details
Analyses were conducted using custom-written scripts

and functions in MATLAB 2018a.

Behavioral analysis
Behavioral analysis was performed based on video re-

corded during experimental sessions. Reach videos were
viewed and manually scored to obtain trial success, hand
position, and time points for reach onset, pellet contact
(PC), and retract onset (RO). To characterize motor per-
formance, we quantified pellet retrieval success rate (per-
centage of pellets successfully retrieved into the box) and
reach duration (time from reach onset to retract onset).
We classified animals as expert and nonexpert based on
a success rate of at least 30% by day 5. Based on this
classification, we found that 14 animals were experts and
6 animals did not achieve expertise in the task in 5 d of
practice.

Local field potential analyses
Artifact rejection was first performed on LFP signals to

remove broken channels and noisy trials. LFPs were then
z-scored and median referenced separately for M1 and
cerebellum. One of the nine implanted animals had exces-
sive noise in the cerebellar recordings, and hence cere-
bellar spike and LFP data were not used from this animal
(Table 1, Animal 4). To compensate for this, one animal
with only cerebellum implants was included in the cohort
(Table 1, Animal 5). LFP power was calculated on a trial-
by-trial basis and then averaged across channels and

animals, with wavelet decomposition using the EEGLAB
(Delorme and Makeig, 2004) function “newtimef.” To
characterize the coordination of activity across regions,
we measured changes in movement-related spectral co-
herence between LFP channels in M1 and cerebellum.
For learning comparisons, coherence was measured for
the same channels on early days (E; days 1 and 2) and
late days (L; days 4 and 5), and specifically for channels
with an increase in power of 0.5 baseline-normalized unit
from early to late days. Strong coherence in a specific fre-
quency band indicates a constant phase relationship in
that frequency between two signals and is theorized to in-
dicate increased communication between regions (Fries,
2005, 2015; Lemke et al., 2019). M1–cerebellum LFP co-
herence was calculated for each pair of channels using
the EEGLAB function “newcrossf” with 0.1 s windows
moving by 0.01 s.
To determine whether the emergence of coordinated

low-frequency activity during training was attributable solely
to faster movements, we compared LFP power and coher-
ence between “fast” trials (trials with a movement duration
,300ms) on days 1 and 2 versus days 4 and 5.
For analyses in Figures 2 and 3, we filtered the LFP sig-

nals to isolate and display the low-frequency (1–4Hz) com-
ponent of the signal. Filtering was performed using the
EEGLAB function “eegfilt” (Delorme and Makeig, 2004). In
addition to display purposes, we also used filtered LFP to
characterize the phase locking of spiking activity specifi-
cally to low-frequency LFP signals. For this, we used the
Hilbert transform linear operator (MATLAB) to extract the
phase information from low- frequency filtered LFP signals
(Fig. 3).
To quantify the phase locking of LFP signals to specific

submovements (MO, PC, and RO), we calculated the
inter-trial coherence (ITC) of LFP signals across trials over
a 1 s window centered on each submovement (Fig. 2C).
ITC was measured and compared for the same channels
on early and late days across all channels (except those
removed because of noise). ITC was computed using the
EEGLAB function newtimef (Delorme and Makeig, 2004).

Spiking analyses
Automated spike sorting was performed using Spyking

Circus (Yger et al., 2018). High-pass filtering and local-me-
dian subtraction was performed on the raw data to obtain
spike data. Spikes are detected as threshold crossings,
and extracellular waveforms and spike times were isolated.
Spikes were projected into a lower-dimensional feature
space using principal component analysis. Then, clustering
and template matching was done to isolate putative spike
times and waveforms from individual neurons. Finally, man-
ual curation was performed to identify well isolated units
that are selected for this analysis. All units were analyzed
without defining their cell type based on waveform shape.
Behavior-related time stamps (trial onset and trial comple-
tion) were sent to the RZ2 analog input channel using an
Arduino digital board and synchronized to neural data.

Unit modulation and spike–LFP phase analysis
Spikes were binned at 25ms and time locked to behav-

ioral markers. For visualization purposes, the perievent

Research Article: Confirmation 5 of 12

February 2023, 10(2) ENEURO.0011-23.2023 eNeuro.org



time histogram (PETH) was estimated by the MATLAB
“fit” the function using smoothing splines. To determine
whether a unit was significantly modulated during move-
ment, a mean and SD baseline firing rate was taken within
the period –4 to –2 s from reach onset. If the mean firing
rate in the period from –350 to –850ms relative to reach
onset differed from the baseline mean by .1.25 baseline
SDs, the unit was categorized as a reach-modulated unit.
To characterize low-frequency spiking activity, we gener-

ated histograms of the LFP phases at which each spike oc-
curred for a single unit to a single LFP channel filtered in the
1–4Hz band in a 1 s window around movement (–250ms
before to 750ms after movement onset) across all trials of a
session (Fig. 3). For learning comparisons, all units were
compared with the same selected M1 and DLS LFP channel
on days 1 and 5. These histograms were generated for each
unit–LFP channel pair both within and across regions. For
every pair, we then calculated the Rayleigh’s z-statistic for
circular nonuniformity. These z-statistics were then used to
calculate the percentage of significantly nonuniform distri-
butions across unit–LFP pairs with a significance threshold
of p=0.05 (Fig. 3). A significantly nonuniform distribution
signifies phase preference for spikes of a unit to an LFP sig-
nal. This process was also performed to compare the suc-
cessful and unsuccessful trials of day 5 (Fig. 3C).

Single trial to template correlation
Spikes from –4 to 4 s around pellet touch were binned

at 20ms, smoothed with a Gaussian kernel with a SD of
60ms, and then z-scored. Binned, smoothed, and stand-
ardized spike counts within the period of –1 to 1.25 s for
all units of a single trial were then concatenated into one
long vector. The correlation (measured using Pearson’s r)

between each concatenated single-trial neural activity and
the mean template (mean of all trials) was computed, and
the mean correlation for each session was reported (Fig. 4).

Gaussian-process factor analysis neural trajectory
analyses
To characterize single-trial representations of popula-

tion spiking activity, we used Gaussian-process factor
analysis (GPFA; Yu et al., 2009; Lemke et al., 2019) to find
low-dimensional neural trajectories, which consisted of
the first two factors, for each trial. GPFA analyses were
conducted using the MATLAB-based graphical user inter-
face DataHigh (version 1.2; Cowley et al., 2013), 10ms
time bins, and a dimensionality of 5. The mean of all trajec-
tories from successful trials was used as a template, ex-
cept for the trajectory of the trial being compared. We
determined the correlation for each individual trial trajec-
tory with the template by taking the linear correlation be-
tween the trajectory of each trial and the mean trajectory
across all trials (Fig. 5B,C; computed in each dimension in-
dependently). To compare successful trials, the template
was recalculated with the trial removed from the pool, and
hence the trial compared was not used to create the tem-
plate. This was performed specifically for the period be-
tween 250ms before movement onset and 250ms after
retract onset. Since this duration varied across trials, we in-
terpolated each trial such that every epoch (reach onset to
touch and touch to retract onset) of each trial was the
same length and then calculated the average deviation.

Statistical analysis
The linear mixed-effects model (implemented using

MATLAB “fitlme”) was used in this study. Using these

Figure 3. Coordinated spiking activity emerges across M1 and cerebellum during skill learning. A, Illustration of spike locking to
LFP phase for M1 unit–M1 LFP (left) and cerebellum unit–cerebellum LFP (right) pair examples. Top, Raster plots of reach-centered
spiking activity from example single units. Middle, the 1–4Hz filtered LFP overlayed with PETHs from example unit. Below is the ex-
tracted phase from the filtered LFP. Bottom, Polar histograms of the spikes that occurred at various LFP phases. B, Cumulative
density functions (CDFs) of the z-statistic for every LFP–unit pair across and within each region. The vertical dotted lines indicate
the significance threshold (p=0.05). The percentage of the pairs with significant p-values is displayed. Lighter colors indicate early
trials, and darker colors indicate later trials. n=428 M1 unit–LFP pairs on day 1; n=358 M1 unit–LFP pairs on day 5; n=66 cerebel-
lum unit–LFP pairs on day 1; n=103 cerebellum unit–LFP pairs on day 5. The p-values derived using a Kolmogorov–Smirnov test.
C, Success/failure CDFs of the z-statistic for every LFP–unit pair within and across each region on day 5. The vertical dotted lines
indicate the significance threshold (p=0.05). The percentage of the pairs with significant p-values is displayed. Green indicates suc-
cessful trials, and gray indicates failures. The p-values were derived using a Kolmogorov–Smirnov test.
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models accounts for the fact that units, channels, or trials
from the same animal are more correlated than those
from different animals; thus, it is more stringent than com-
puting statistical significance over all units, channels, or
trials (Aarts et al., 2014; Lemke et al., 2019). We fitted ran-
dom intercepts for each rat and reported the p values for
the regression coefficients associated with successful or

unsuccessful outcome, early (that constituted days 1 and
2) or late (that constituted days 4 and 5) learning, or train-
ing session. Linear mixed-effects models were used for
testing significance in Figures 1, D and E, 2C–E, 4, B and
D, and 5C. Two-sample Kolmogorov–Smirnov tests were
used to test whether spike-LFP phase-locking values on
days 1 and 5 came from the same distribution (Fig. 3C).

Figure 4. Changes in M1 and cerebellum neural dynamics with skill learning. A, M1 successful trial averaged the PETHs from an ex-
ample rat (left) and a single-trial PETH example (right) for early (top) and late (bottom) training sessions. B, M1 PETH template
match over training. Bars indicate mean 6 SEM over trials. Gray lines indicate average per animal (n=5 animals). The p-values are
from mixed-effects models. C, Cerebellum successful trial-averaged PETHs from an example rat (left) and single-trial PETH example
(right) for early (top) and late (bottom) training sessions (CB: cerebellum). D, Cerebellum PETH template match over training. Bars in-
dicate the mean 6 SEM over trials. Gray lines indicate the average per animal (n=5 animals).

Figure 5. Skilled movement representation in M1 and cerebellum. A, Example GPFA neural trajectories from late training sessions
for M1 (top) and cerebellum (bottom) in a single animal. B, Illustration of the process of comparing factor trajectories from success-
ful and unsuccessful trials to the template (mean successful trajectory). C, Deviation from the template for M1 (top) and cerebellum
(bottom) factors. Gray lines represent individual animals (n=5 animals), and the black line is the mean 6 SEM across animals. The
p-values are from mixed-effects models.
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All statistical analyses were implemented within MATLAB.
We fitted random intercepts for each rat and reported the
p values for the regression coefficients associated with
successful or unsuccessful outcome, early or late learn-
ing, or training session.

Data availability
The datasets generated and analyzed in the current

study are available from the corresponding author on rea-
sonable request.

Results
We trained 20 rats on the Whishaw forelimb reach-to-

grasp task (Whishaw and Pellis, 1990; Wong et al., 2015)
in our in-house-built automated training box that is com-
patible with electrophysiology (Fig. 1A; Gulati et al., 2015;
Wong et al., 2015; Ramanathan et al., 2018). We chose
this task because of its similarity to skilled learning tasks
in humans (Iwaniuk and Whishaw, 2000; Klein et al., 2012)
as well as extensive evidence that this task is associated
with multiple levels of neural plasticity in the M1 and the
cerebellum. Examples of this include changes in long-
term potentiation (Rioult-Pedotti et al., 2000), dendritic
spine growth (Fu et al., 2012), motor map plasticity in the
M1 (Kleim et al., 1998), as well as patterned spiking in the
cerebellar cortex (Heck et al., 2002), and, more recently, it
has also been demonstrated that cerebellar associa-
tive learning underlies reach adaptation (Calame et al.,
2021). Importantly, patients with neurologic injury in
either region show impairment in this skilled reaching
behavior (Zackowski et al., 2002; Sathian et al., 2011).
In a subset of rats (n = 10) that were monitored during
reach-to-grasp motor skill consolidation, we also recorded
neural signals, including single-unit activity and LFPs in M1
and cerebellum (Fig. 2A). For the electrophysiology experi-
ments, microelectrodes were implanted (microwire arrays
in M1 and tetrodes/polytrodes in cerebellum; see Materials
and Methods; Table 1). In the animals that were recorded,
training began 5 d after electrode placement surgery.

Measurement of skilled motor performance
As in other studies that use the Whishaw forelimb reach-

to-grasp task, we assessed motor skill learning across two
dimensions: speed and accuracy (Fig. 1B–E; Ramanathan
et al., 2015; Lemke et al., 2019). Accuracy was measured
as the percentage of success in retrieving the pellet, and
speed was assessed using the time the animal took to per-
form the full reach-grasp-retract motor sequence. Training
lasted for 5d in automated behavioral boxes (Wong et al.,
2015; Ramanathan et al., 2018), and animals performed
100–160 trials each day. Animals were split into the follow-
ing two categories: experts that achieved a success rate
.30% on late days, and nonexperts that did not. On aver-
age, success rates of experts increased from 24.06 4.3%
to 49.36 3.0% from early to late days (mean 6 SEM;
mixed-effects model: p=2.46� 10�20), and reach duration
came down from 346.76 71.1ms on early days to
312.06 63.4ms on late days (mean 6 SEM; mixed-ef-
fects model, p = 1.54� 10�3). On average, the success

rates of nonexperts increased from 9.56 2.8% to
16.063.7% from early to late days (mean 6 SEM; mixed-
effects model, p=1.18� 10�4), and reach duration non-
significantly increased from 714.36 193.2ms on early
days to 857.66202.6ms on late days (mean 6 SEM;
mixed-effects model, p = 0.444; Fig. 1).

Coordinatedmovement-related activity emerges
acrossM1 and cerebellum during skill learning
We next evaluated the cerebellum in search of transient

LFO dynamics similar to those that were recently shown
to emerge in the M1 (Ramanathan et al., 2018; Lemke et
al., 2019) while learning this skill. We observed that coor-
dinated LFO (1–4Hz) activity appeared in LFP signals dur-
ing movement across M1 and cerebellum in experts (Fig.
2B,C), but not in nonexperts (Fig. 2D). The movement-re-
lated LFO power increased from early to late days in both
M1 and cerebellum for experts (Fig. 2D; M1 baseline-
normalized power: early days, 0.566 0.13; late days,
0.726 0.14; mixed-effects model: t(2270) = 0.4, p= 9.2�
10�6; cerebellum power, 0.4460.10 to 0.726 0.24;
mixed-effects model: t(1726) = 4.8, p=1.1� 10�6). In nonex-
perts, M1 LFO power did not change and cerebellar power
in LFO power decreased (M1 baseline-normalized power:
early days, 0.626 0.08; late days, 0.666 0.12; mixed-ef-
fects model, p=0.614; cerebellum power, 1.716 0.66 to
0.746 0.24, mixed-effects model, p=2.1� 10�11).
We also analyzed movement-related low-frequency

LFP coherence between M1 and cerebellum LFPs, and
we found that this also increased only in experts (Fig. 2E;
early days, 0.206 0.02 coherence; late days, 0.226 0.01
coherence; mixed-effects model: t(7174) = 10.0, p=1.3�
10�23). These increases in LFP power and coherence were
not solely a by-product of faster and more consistent
movements, since high-LFP power and coherence were
not present for fast trials early in training, which we checked
in a subset of expert animals. On the contrary, low-fre-
quency LFP coherence between M1 and cerebellum LFPs
decreased in the nonexperts (early days, 0.266 0.02 coher-
ence; late days, 0.186 0.01 coherence; mixed-effects
model, p=2.1� 10�194). Since we did not find coemergent
LFO activity in nonexperts, our subsequent analyses that
looked at spike–LFP phase relations focused only on ex-
perts as nonexperts did not show an LFO power increase.
With training, we evaluated reaching submovements

around MO, PC, and RO, and whether they became pre-
cisely phase locked to 1–4 Hz LFP signals in M1 and cere-
bellum. We found that all three submovements became
precisely phase locked to 1–4Hz LFP signals in M1 and
cerebellum in animals that gained expertise, consistent
with what we would expect if this activity was involved in
generating submovements within this task (Fig. 2F; signifi-
cant increase in ITC of the M1 LFP locked to MO: mixed-ef-
fects model: t(486) =3.9, p=1.07� 10�4; PC (right at the time
of grasp initiation): mixed-effects model: t(486) =8.2, p=2.7�
10�15; and RO: mixed-effects model: t(486) =11.0, p=2.0�
10�25; cerebellum LFP locked to movement onset: mixed-
effects model: t(818) = 3.2, p=0.0014; pellet touch: mixed-
effects model: t(818) = 8.0, p=5.3� 10�15; retract onset:
mixed-effects model: t(818) = 8.7, p=1.9� 10�17).
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Coordinated spiking activity emerges across M1 and
cerebellum during skill learning
The emergence of coordinated low-frequency activity

across M1 and cerebellum was also clearly observed in
movement-related spiking activity across M1 and cere-
bellum. We quantified phase locking of movement-related
M1 and cerebellar spikes to 1–4Hz LFP signals in each re-
gion by generating polar histograms of the LFP phase at
which each spike occurred for a single unit and LFP chan-
nel (Fig. 3A). The nonuniformity of the distribution of
phases (indicating phase locking) was quantified using a
Raleigh test of circular nonuniformity. We compared all
task-related M1 and cerebellar units on days 1 and 5 to a
representative LFP channel in M1 and cerebellum, and
observed an increase in the percentage of M1 and cere-
bellum units phase locked to both M1 and cerebellum
LFP signals with training (Fig. 3B, the black vertical
dashed lines correspond to the p = 0.05 significance
threshold of the natural log of the z statistic; M1 unit–
M1 LFP pairs: 35.2% day 1 to 55.4% day 5, p = 5.3
� 10�9, Kolmogorov–Smirnov test; M1 unit–cerebellum
LFP pairs: 40.8–70.8%, p = 1.6� 10�15, Kolmogorov–
Smirnov test; cerebellum unit–M1 LFP pairs: 87.5–
82.2%, p = 0.12, Kolmogorov–Smirnov test; cerebellum
unit–cerebellum LFP pairs: 63.1–73.9%, p = 1.1� 10�4,
Kolmogorov–Smirnov test). All the pairs showed a sig-
nificantly increased phase locking, except cerebellum
unit–M1 LFP pairs, where a high proportion of units
were phase locked to M1 even during early days. These
results suggest that coordinated low-frequency activity
emerges across M1 and cerebellum during skill learn-
ing. However, cerebellar units are extensively phase
locked to M1 LFOs E in training.
Next, we also explored these relations for successful

and unsuccessful trials on day 5. We found that all four
pairs showed significant phase locking of M1 and cere-
bellar units to 1–4Hz M1 and cerebellum LFPs for suc-
cessful trials (Fig. 3C, the black vertical dashed lines
correspond to the p = 0.05 significance threshold of the
natural log of the z-statistic; M1 unit – M1 LFP pairs:
30.1% for unsuccessful trials vs 51.3% for successful
trials, p=4.0� 10�4, Kolmogorov–Smirnov test; M1 unit – cer-
ebellum LFP pairs: 46.4–70.0%, p=6.2� 10�8, Kolmogorov–
Smirnov test; cerebellum unit – M1 LFP pairs: 51.1–82.2%,
p=2.7� 10�7, Kolmogorov–Smirnov test; cerebellum
unit – cerebellum LFP pairs: 62.5–67.0%, p = 9.5�
10�5, Kolmogorov–Smirnov test).

Reorganization of neural dynamics in M1 and
cerebellumwith skill learning
We also investigated the consistency of single-trial

population spiking activity by computing the correlations
between single-trial neural activity and the trial-averaged
template across all units in a session (Fig. 4). In early ses-
sions, trial-to-trial neural firing was more inconsistent
compared with later sessions, while later sessions
were consistently associated with a stereotyped se-
quence of unit activations that also matched PETHs.
This was observed in both M1 (Fig. 4A) and cerebellar
(Fig. 4C) activity. Across the sessions from all rats, we

observed a significant increase in template correlation
among trials (Fig. 4B,D; linear mixed-effects model:
M1: t(2445) = 10.3, p=3.5� 10�24; cerebellum: t(2421) = 6.4,
p=2.1� 10�10), indicating that trial-to-trial variability in
M1 and cerebellum neural activity were reduced with skill
consolidation.

Skilled movement representation in M1 and
cerebellum
Last, we explored the representation of successful and

failed reaches in M1 and cerebellum. We used GPFA to
find low-dimensional neural trajectory representations of
population spiking activity in M1 and cerebellum on indi-
vidual trials (Yu et al., 2009; Lemke et al., 2019; Fig. 5A)
and then compared trajectories for successful and un-
successful trials in early and late learning. We observed
a difference between trajectories for successful and un-
successful trials in M1 and cerebellum. To compare
successful and unsuccessful trials, we computed the
correlation between the mean neural trajectory for suc-
cessful trials, that is, the “successful template,” and
the neural trajectory of each individual trial (Fig. 5B)
during the period from 250ms before movement onset
to 250ms after retract onset (Fig. 5C). This period en-
compassed the movement onset and pellet contact for
grasping and retraction of the forelimb. Since trials differed
in the duration of this period, we interpolated trajectories
such that they were all the same length. Neural trajectories
for unsuccessful trials had significantly lower correlation
than successful trials for M1, but not for cerebellum (Fig. 5C;
E M1, p=3.5� 10�6; E cerebellum, p=0.144; L M1, p=
3.6 � 10�5; L cerebellum, p=0.121 mixed-effects model
with Bonferroni correction for multiple comparisons). This in-
dicates that spiking activity during the reach-to-grasp task
is not remarkably different for successful versus unsuccess-
ful trials in the cerebellum.

Discussion
In summary, we found that coordinated low-frequency

activity emerged across M1 and cerebellum, which was
linked to the emergence of faster and more accurate
reaching movements. We found interindividual variability
within animals, and we found that LFO activity emerged
in animals that were able to gain expertise in the task
within 5 d. Previous reports indicate that slow improve-
ments in accuracy can continue to occur with extended
practice in the rodent reach-to-grasp task (Lemke et al.,
2019) and that the behavioral exploration phase can vary
between animals when the target location is switched in
this reaching task (Kondapavulur et al., 2022). Our para-
digm involved training for a contiguous 5 d, and we ob-
served emergent LFO trends in animals that gained
proficiency in the task. We further found that coordinated
spiking activity in both these regions was linked to accu-
rate reach-to-grasp movements. Our work details the
mesoscopic transmission in cortico-cerebellar networks
and how it evolves with expert skill learning as well as
how skilled reaching has a motor cortical and cerebellar
cortical reliance and spiking activity differences in these
regions for successful behavior.
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Role of M1 and cerebellum in motor skill learning and
execution
M1 has a well established role in motor learning as well

as movement execution (Peters et al., 2017). In particular,
M1 is critical for the execution of skilled dexterous move-
ment (Iwaniuk and Whishaw, 2000; Guo et al., 2015;
Peters et al., 2017; Lemke et al., 2019). Our work is con-
sistent with this notion as we also see that M1 activity pat-
terns are different for successful pellet retrieval (Figs. 3C,
4A, 5). The projection of M1 to the cerebellum is thought to
mediate fine-tuning of the movement. Cerebellar neurons
in the cortex and in the deep nuclei are known to be modu-
lated around several movement events. Perturbation of M1
input to cerebellum or direct manipulation of cerebellum it-
self is shown to delay movement initiation and to increase
movement variability and duration (Conrad and Brooks,
1974; Becker and Person, 2019; Nashef et al., 2019; Guo
et al., 2021). Our work is also consistent with these obser-
vations as we found that precise, accurate movements had
more consistent cerebellar spiking–M1 LFP LFO coordina-
tion for successful reaches on day 5 in expert animals (Fig.
3C). However, we found that GPFA-derived neural trajecto-
ries were more correlated for successful trials in M1 only
(Fig. 5). This indicates that while cerebellum spike–M1 LFP
coordination (with latter being aggregate synaptic input
within an area) was higher on later phases of training for
successful movements, just the spiking activity in cerebel-
lar cortex was not different for successful versus failed
reaches. In addition to this role in increasing movement
precision, cerebellar cortex is also theorized to contribute
to task-relevant dimensionality expansion that can aid in
flexible computation and enhance learning (Marr, 1969;
Albus, 1971; Litwin-Kumar et al., 2017). This notion of di-
mensionality expansion was confirmed experimentally with
the observations of high correlations among granule cell
activity when mice expertly exerted pushing control over a
manipulandum in a forelimb movement task (Wagner et al.,
2019). This work also showed an increase in emergent
shared variance in M1 and cerebellar cells. Our increased
M1–cerebellum LFP coherence with skill learning is con-
sistent with this observation. Neural network models of
cortico-cerebellar networks show that cerebellar feedback
improves the rate of learning and that the cerebellar net-
work also carries task representation (Boven et al., 2023).
Our experimental data support this notion as well. We ob-
served that M1–cerebellum LFP coherence increased with
learning, and we observed movement-modulated units in
the cerebellum. One of our observations also showed that
M1 LFP–cerebellar units showed strong coordination in the
low-frequency range early on in training (Fig. 3B). This
might suggest that cerebellar activity was critical during
reach-to-grasp skill acquisition and is consistent with the
notions of M1 being input driven, and is also consistent
with the cerebellar contributions to the acquisition of skilled
volitional movements (Bloedel et al., 1997; Sauerbrei et al.,
2020).

Coordinated oscillatory dynamics across motor
networks
One of our key findings here is on low-frequency activity

across M1 and cerebellum as an important marker of

skilled motor control. We found evidence of such activity
at the level of neural spiking and LFPs during the perform-
ance of dexterous task in rats. It is noteworthy that similar
LFOs were recently shown to be disrupted in M1 post-
stroke and tracked recovery (Ramanathan et al., 2018).
This work also boosted M1 LFOs through electric stimula-
tion to promote recovery. Recently, there has also been
an interest in cerebellar stimulation for stroke recovery
(Machado et al., 2009; Shah et al., 2017; Abbasi et al.,
2021), but a biomarker in cortico-cerebellar networks that
can be a target for closed-loop electric stimulation for
stroke recovery is lacking. Future work can test whether
the LFOs we found in cortico-cerebellar networks of
healthy animals with skill consolidation here can also
serve as a biomarker for motor function during recovery
from stroke. Mesoscopic biomarkers such as LFPs pres-
ent a lower translational barrier in clinical populations.
Cortical LFOs can be used to decode reach-related

activity and predict spiking phase across multiple behav-
ioral states (Mollazadeh et al., 2009; Hall et al., 2014b).
Such activity is also correlated with multiphasic muscle
activations and timing of movements (Stefanics et al.,
2010; Churchland et al., 2012; Flint et al., 2012; Hall et
al., 2014b). Recent work also suggests that oscillatory dy-
namics reflect an underlying dynamical system (Churchland
et al., 2012). This previous work argues that LFOs represent
an intrinsic property of motor circuits associated with pre-
cise movement control. Our findings extend this body of
work by showing LFO dynamics in both M1 and cerebel-
lum (Fig. 2). The exact origin of LFOs and underlying gen-
erators remains unknown. While reach-related LFOs may
have involved striatum (Lemke et al., 2019) or thalamo-
cortical activity (Dossi et al., 1992), so far, our results
here raise the possibility of cerebellar involvement.
Further work can probe interactions between M1 and the
broader motor network to pinpoint the drivers of the
electrophysiologic changes seen during skill learning.
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